Large-Scale Mortalities Disposal	
Ted Funk, PhD, PE	
Illinois Swine Day 2019	

Local Planning for Depopulation and Disposal Has Merit

Owners and employees

Animal care

Public relations

Aftermath

Carcass Disposal: How, Where

- 1. Agency guidance as to method: burial, thermal, landfill, other
- 2. Screening for selection of local site, based on method(s) and time of year
- 3. Final site selection may have to be further screened at time of event (e.g. seasonal high water table)

Methods Considered Today: Type III Event (virus)

- Burial
- Composting
- Burning—air curtain
- Rendering
- Landfilling

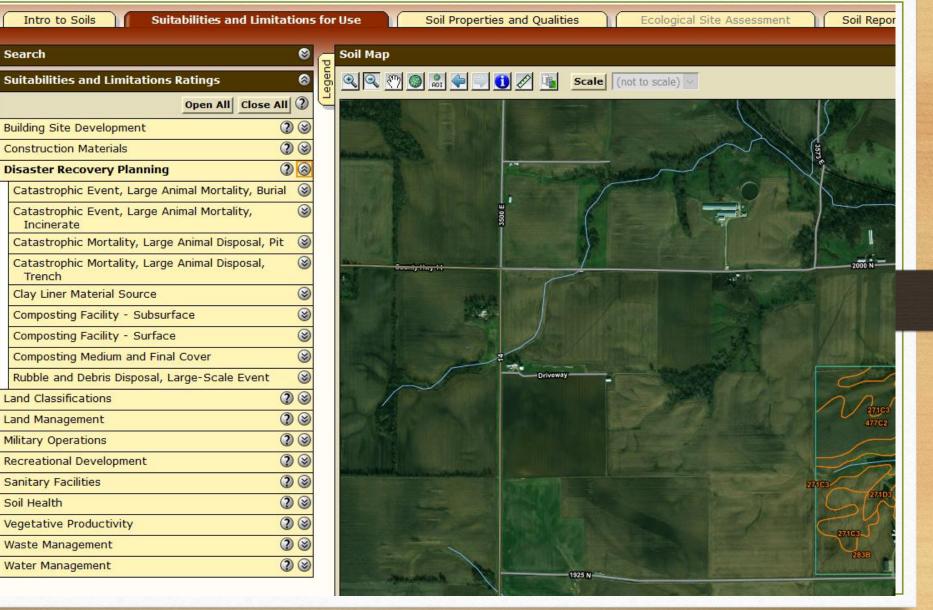
Method 1: Burial

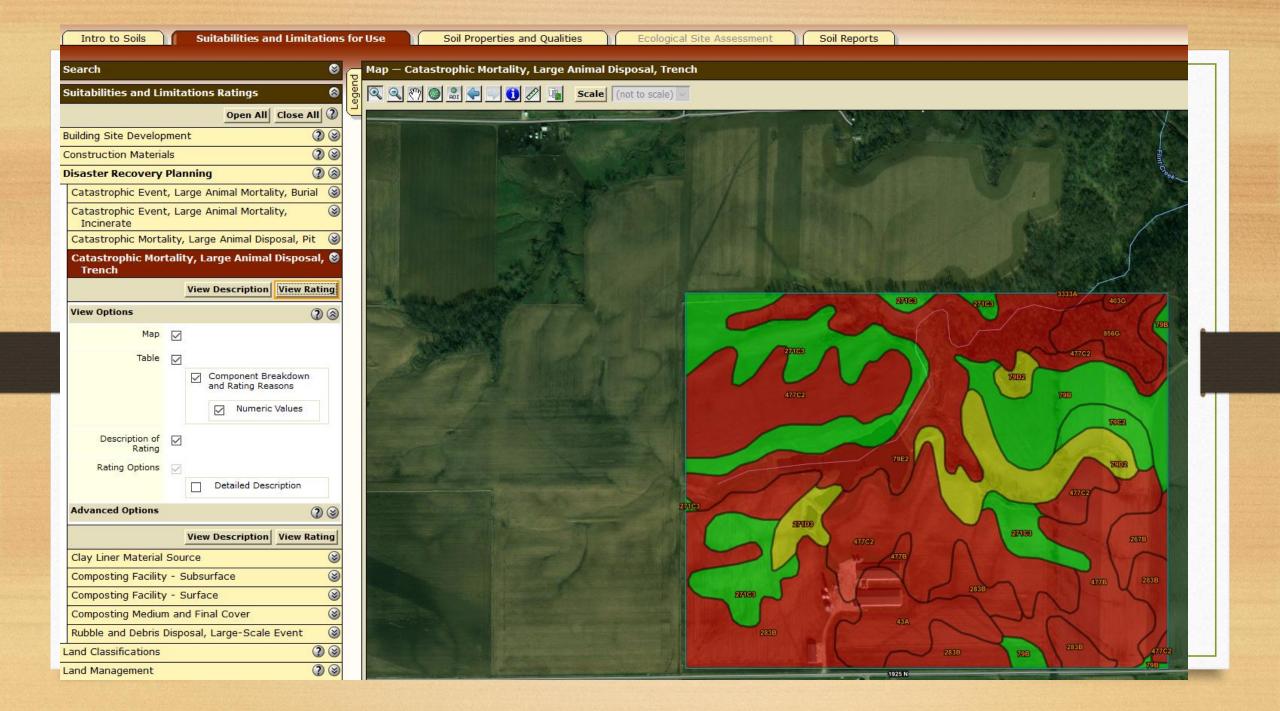
- Where
- How deep
 - Also consider "surface burial"
- Site footprint
- Logistics and equipment

Before any excavation: Call JULIE!

NRCS Web Soil Survey

- Locate your site
- Determine area of interest (AOI) for disposal (property boundary, neighbors, etc.)
- Soils map
- Soils information— "Disaster Recovery"


Site Screening: NRCS Web Soil Survey



Soils Map for AOI

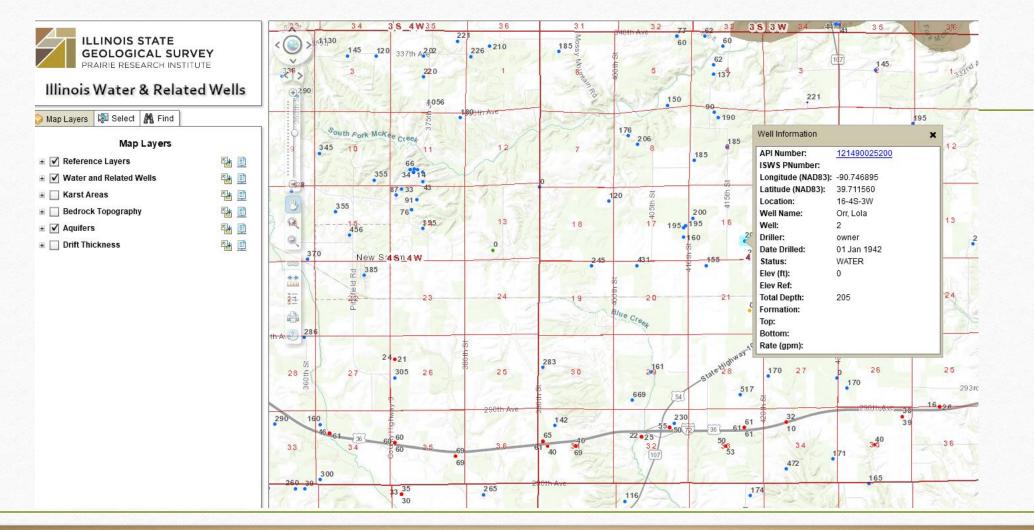
Search				8	
Map Unit	Legend			8	
				?	
	Pike County, Illing	•		^	
Pike County, Illinois (IL149) 🛞					
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI		
43A	Ipava silt loam, 0 to 2 percent slopes	9.9	4.8%		
79B	Menfro silt loam, 2 to 5 percent slopes	15.1	7.2%		
79C2	Menfro silt loam, 5 to 10 percent slopes, eroded	3.2	1.5%		
79D2	Menfro silt loam, 10 to 18 percent slopes, eroded	13.0	6.2%		
79E2	Menfro silt loam, 18 to 25 percent slopes, eroded	29.4	14.1%		
267B	Caseyville silt loam, 2 to 5 percent slopes	3.5	1.7%		
271C3	Timula silt Ioam, 5 to 10	32.5	15.6%	~	

Description of Soils Limitations

	Sum	mary by Map Unit — Pike Cou	unty, Illinois (IL149)			
Summary by M	lap Unit — Pike County, Illinois (IL149)					
Map unit symbol	Map unit name	Rating	Component name (percent)	Rating reasons (numeric values)	Acres in AOI	Pe
43A	Ipava silt loam, 0 to 2 percent slopes Very limited	Very limited	Ipava (85%)	Wetness (1.00)	9.9	9 -
				Clay content (0.03)		
			Denny (5%)	Ponding (1.00)		
				Wetness (1.00)		
				Water gathering surface (0.50)		
				Clay content (0.16)		
			Sable (5%)	Ponding (1.00)		
				Wetness (1.00)		
				Water gathering surface (0.33)		
				Clay content (0.00)		
			Virden (5%)	Ponding (1.00)		
				Wetness (1.00)		
				Clay content (0.17)		
79B	Menfro silt loam, 2 to 5 percent slopes	Not limited	Menfro (90%)		15.1	
79C2	Menfro silt loam, 5 to 10 percent slopes, eroded	Not limited	Menfro (90%)		3.2	
79D2	Menfro silt loam, 10 to 18 percent slopes, eroded	Somewhat limited	Menfro (90%)	Slope (0.96)	13.0	
79E2	Menfro silt loam, 18 to 25 percent slopes, eroded	Very limited	Menfro (100%)	Slope (1.00)	29.4	

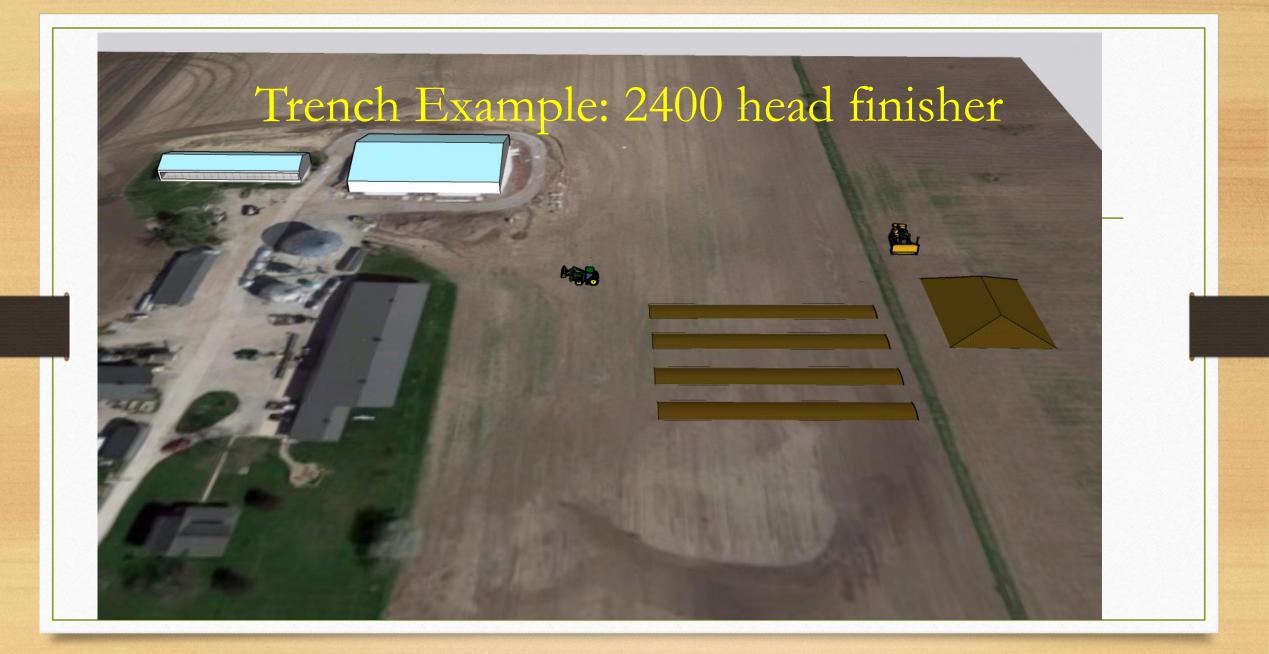
Geological Investigation Still Required

- Soil survey is typically to 6 or 7 feet deep
- You may want trench deeper than that
- Geological investigation needs to be trench depth plus 2 feet (minimum)!
- Seasonal high water table, other limitations, critical


Types of Soils Limitations

- Wetness, ponding
- Slope
- Bedrock, gravel layers
- Soil plasticity or stickiness
- Etc.
- NOTE: Some limitations will only be evident after a site geological investigation

Resources for the Producer


- NRCS
- USDA/APHIS
- Maps of water wells, public and private
- IL Landfills map
- Equipment manufacturers, suppliers, dealers

Other Resources: Private Wells

Example: Trench Burial

- Trench:Carcass volume ratio recommendations about 4:1 (USDA/APHIS)
- Single-width trench by bulldozer ("slot excavating") most efficient excavation method
- 4' depth limitation avoids trench safety complexities (OSHA) in most cases
- Stockpile topsoil for final cover

Method 2: Composting

- Where
- Carbon source needs
- Pile configuration
- Site footprint

Glanville et al. used unground corn stalks to compost cattle mortalities in Iowa, which led to bridging, poor heat retention, downwind odor, and heavy fly infestation

Method 2: Composting

- Logistics and equipment (including grinding/not grinding)
- Site protection
- Monitoring
- Turning?
- Aftermath

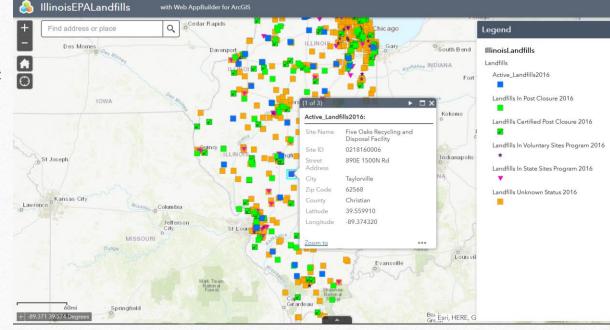
Photo: Morbark, Inc.

Previous example: Composting limitations

Composter Example: 2400 head finisher

Method 3: Air Curtain Burning

- Permit: IEPA Bureau of Air
- Where
- Fuel source and amounts
- Combustion rates per device (4-8 tons/hour?)
- Other considerations—e.g. ash disposal


Photo: USDA/APHIS

Method 4: Rendering

- Not likely an acceptor for very large quantities of carcass material
- Logistics farm-to-renderer may be complex (biosecurity concerns)

Method 5: Landfilling

- EPA Subtitle D Landfills (i.e.
 Municipal Solid Waste) should be safe for disposal...
- ...However, accepting carcasses is up to the owner (not the local operator)
- Advance agreement in writing would be essential for this method
- Logistics may be complex

Other Considerations

- Restricting site and activity views to fly-overs by press (i.e. drones)
- Perimeter fencing
- See IL NRCS Conservation Practice Standard 368, *Emergency Animal Mortality Management*

Free Mortalities Disposal Planning Services Available Now through IPPA

- Private planning meeting with producer or integrator
- Ag engineering consultant and UIUC faculty
- Schedule meeting through the engineer

Questions or comments?

Ted Funk, PhD, PE 217-369-7716 funkt7@gmail.com

